5 research outputs found

    EFFECTS OF RESVERATROL ON PACLITAXEL-SENSITIVE AND –RESISTANT TRIPLE NEGATIVE BREAST CANCER CELLS

    Get PDF
    poster abstractTreatment of drug-resistant cancer cells remains a difficult problem in cancer therapy because most resistant cells can pump out drugs or upregulate other survival pathways to bypass a targeted therapy. The poly-phenol natural compound, resveratrol, has been shown to inhibit cell growth of multiple cancer types, but it is not cytotoxic to normal cells. However, the effects of resveratrol in triple negative breast cancer cells as well as cancers that are resistant to the common cancer drug, paclitaxel, are not well under-stood. In this study, the effects of resveratrol were investigated in the triple negative breast cancer cell line MDA-MB-231 as well as a novel paclitaxel-resistant MDA-MB-231 derived line generated in our laboratory. Both cell lines exhibited a reduction in cell proliferation after resveratrol treatment, with the paclitaxel-resistant cells to a greater extent. In addition, resveratrol decreased the ability of both cell lines to form colonies when plated at low density indicating reduced cell survival capacity. Resveratrol treatment also increased the amount of DNA fragmentation associated with cell death in both cell lines, again with the paclitaxel resistant cells being more sensitive. By protein expression analyses, we observed that in both the parental and resistant cell lines, resveratrol may be acting by through NAD-dependent deacetylase sirtuin (SIRT1) activity by decreasing the expression of the in-hibitor-of-apoptosis protein, survivin, as well as increasing the activator-of-cell death, caspase 7. These data suggest that resveratrol can inhibit prolif-eration and induce cell death in triple negative breast cancer cells, including paclitaxel-resistant cells. In addition, these results provide rationale for the use of resveratrol as an important starting point for the development of a novel anti-cancer agent for drug resistant, aggressive cancers as well as in combination with other anti-cancer drugs without significant toxicity to nor-mal cells

    Molecular Mechanisms of Paclitaxel Resistance and Resveratrol Sensitivity in MDA-MB-231 Breast Cancer Cells

    Get PDF
    poster abstractTreatment of drug-resistant cancer cells remains a difficult problem in cancer therapy because most resistant cells can pump out drugs or upregulate other survival pathways to bypass a targeted therapy. To study cancers that are resistant to the common cancer drug, paclitaxel, a novel paclitaxel-resistant cell line was generated from the breast cancer cell line MDA-MB-231. A “spiking” method of paclitaxel treatment was used to select for a population of cells that are resistant to the drug. This method mimics the development of resistance in recurrent tumors in patients. However, it is difficult to study such a heterogeneous population. To better study these cells, the paclitaxel-resistant cell line was cloned using a limiting dilution method to provide more homogeneous populations of resistant cells. The 29 clones obtained exhibited a paclitaxel IC50 range of 8 μM to 78 μM which was equivalent to a 200- to 2000-fold increase in resistance compared to the parent line. It has been suggested that the polyphenol natural compound, resveratrol, which has been shown to inhibit cell growth of multiple cancer types, may be useful as a combination anti-cancer treatment or novel therapeutic for drug-resistant cancer cells. The parent line, the heterogeneous resistant line, the least paclitaxel-resistant clone and the most paclitaxelresistant clone were similarly sensitive to resveratrol treatment. We observed that treatment with 10-100 μM concentrations of resveratrol in all cell lines showed a reduction in cell proliferation and increased apoptosis within 72 hours (p<0.05), with the paclitaxel-resistant cells to a greater extent. In addition, resveratrol decreased the ability of the parent, heterogeneous resistant and the highest resistant clone cells to form colonies (an indication of reduced cell survival capacity). This resistant cell line and its clones provide a powerful tool to study paclitaxel-resistance in and therapeutics for breast cancer

    Resveratrol augments paclitaxel treatment in MDA-MB-231 and paclitaxel-resistant MDA-MB-231 breast cancer cells

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Resveratrol has been shown to inhibit cell growth and induce apoptosis, as well as augment chemotherapeutics and irradiation in multiple cancer types. However, it is unknown if resveratrol is beneficial for treating drug-resistant cancer cells. To study the effects of resveratrol in triple negative breast cancer cells that are resistant to the common cancer drug, paclitaxel, a novel paclitaxel-resistant cell line was generated from the MDA-MB-231 breast cancer cell line. The resulting cell line, MDA-MB-231/PacR, exhibited a 12-fold increased resistance to paclitaxel but remained sensitive to resveratrol treatment. Resveratrol treatment reduced cell proliferation and colony formation and increased senescence and apoptosis in both the parental MDA-MB-231 and MDA-MB-231/PacR cell lines. Importantly, resveratrol treatment augments the effects of paclitaxel in both cell lines. The expression of the drug efflux transporter gene, MDR1, and the main metabolizing enzyme of paclitaxel gene, CYP2C8, was increased in the resistant cells. Moreover, pharmacological inhibition of the protein products of these genes, P-glycoprotein and CYP2C8, decreased paclitaxel resistance in the resistant but not in the parental cells, which suggests that the increase of these proteins are important contributors to the resistance of these cells. In conclusion, these studies imply that resveratrol, both alone and in combination with paclitaxel, may be useful in the treatment of paclitaxel-sensitive and paclitaxel-resistant triple negative breast cancers

    Medical genetics and epigenetics of telomerase

    Get PDF
    Telomerase is a specialized reverse transcriptase that extends and maintains the terminal ends of chromosomes, or telomeres. Since its discovery in 1985 by Nobel Laureates Elizabeth Blackburn and Carol Greider, thousands of articles have emerged detailing its significance in telomere function and cell survival. This review provides a current assessment on the importance of telomerase regulation and relates it in terms of medical genetics. In this review, we discuss the recent findings on telomerase regulation, focusing on epigenetics and non-coding RNAs regulation of telomerase, such as microRNAs and the recently discovered telomeric-repeat containing RNA transcripts. Human genetic disorders that develop due to mutations in telomerase subunits, the role of single nucleotide polymorphisms in genes encoding telomerase components and diseases as a result of telomerase regulation going awry are also discussed. Continual investigation of the complex regulation of telomerase will further our insight into the use of controlling telomerase activity in medicine

    Potentiation of Carboplatin-Mediated DNA Damage by the Mdm2 Modulator Nutlin-3a in a Humanized Orthotopic Breast-to-Lung Metastatic Model

    Get PDF
    Triple-negative breast cancers (TNBC) are typically resistant to treatment, and strategies that build upon frontline therapy are needed. Targeting the murine double minute 2 (Mdm2) protein is an attractive approach, as Mdm2 levels are elevated in many therapy-refractive breast cancers. The Mdm2 protein-protein interaction inhibitor Nutlin-3a blocks the binding of Mdm2 to key signaling molecules such as p53 and p73α and can result in activation of cell death signaling pathways. In the present study, the therapeutic potential of carboplatin and Nutlin-3a to treat TNBC was investigated, as carboplatin is under evaluation in clinical trials for TNBC. In mutant p53 TMD231 TNBC cells, carboplatin and Nutlin-3a led to increased Mdm2 and was strongly synergistic in promoting cell death in vitro. Furthermore, sensitivity of TNBC cells to combination treatment was dependent on p73α. Following combination treatment, γH2AX increased and Mdm2 localized to a larger degree to chromatin compared with single-agent treatment, consistent with previous observations that Mdm2 binds to the Mre11/Rad50/Nbs1 complex associated with DNA and inhibits the DNA damage response. In vivo efficacy studies were conducted in the TMD231 orthotopic mammary fat pad model in NOD.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ (NSG) mice. Using an intermittent dosing schedule of combined carboplatin and Nutlin-3a, there was a significant reduction in primary tumor growth and lung metastases compared with vehicle and single-agent treatments. In addition, there was minimal toxicity to the bone marrow and normal tissues. These studies demonstrate that Mdm2 holds promise as a therapeutic target in combination with conventional therapy and may lead to new clinical therapies for TNBC
    corecore